Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparative Studies of White-Rot Fungal Strains (Trametes hirsuta MTCC-1171 and Phanerochaete chrysosporium NCIM-1106) for Effective Degradation and Bioconversion of Ferulic Acid.

Identifieur interne : 000129 ( Main/Exploration ); précédent : 000128; suivant : 000130

Comparative Studies of White-Rot Fungal Strains (Trametes hirsuta MTCC-1171 and Phanerochaete chrysosporium NCIM-1106) for Effective Degradation and Bioconversion of Ferulic Acid.

Auteurs : Pravin D. Patil [Inde] ; Ganapati D. Yadav [Inde]

Source :

RBID : pubmed:30555994

Abstract

Biodegradation of ferulic acid, by two white-rot fungal strains (Trametes hirsuta MTCC-1171 and Phanerochaete chrysosporium NCIM-1106) was investigated in this study. Both strains could use ferulic acid as a sole carbon source when provided with basal mineral salt medium. T. hirsuta achieved complete degradation of ferulic acid (350 mg L-1) in 20 h, whereas P. chrysosporium degraded it (250 mg L-1) in 28 h. The metabolites produced during degradation were distinguished by gas chromatography-mass spectrometry. Bioconversion of ferulic acid to vanillin by P. chrysosporium was also investigated. The optimum experimental conditions for bioconversion to vanillin can be summarized as follows: ferulic acid concentration 250 mg L-1, temperature 35 °C, initial pH 5.0, mycelial inoculum 0.32 ± 0.01 g L-1 dry weight, and shaking speed 150 rpm. At optimized conditions, the maximum molar yield obtained was 3.4 ± 0.1%, after 20 h of bioconversion. Considering that the degradation of ferulic acid was determined by laccase and lignin peroxidase to some extent, the possible role of ligninolytic enzymes in overall bioconversion process was also studied. These results illustrate that both strains have the potential of utilizing ferulic acid as a sole carbon source. Moreover, P. chrysosporium can also be explored for its ability to transform ferulic acid into value-added products.

DOI: 10.1021/acsomega.8b01614
PubMed: 30555994
PubMed Central: PMC6289575


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comparative Studies of White-Rot Fungal Strains (
<i>Trametes hirsuta</i>
MTCC-1171 and
<i>Phanerochaete chrysosporium</i>
NCIM-1106) for Effective Degradation and Bioconversion of Ferulic Acid.</title>
<author>
<name sortKey="Patil, Pravin D" sort="Patil, Pravin D" uniqKey="Patil P" first="Pravin D" last="Patil">Pravin D. Patil</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019</wicri:regionArea>
<wicri:noRegion>Mumbai 400019</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yadav, Ganapati D" sort="Yadav, Ganapati D" uniqKey="Yadav G" first="Ganapati D" last="Yadav">Ganapati D. Yadav</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019</wicri:regionArea>
<wicri:noRegion>Mumbai 400019</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30555994</idno>
<idno type="pmid">30555994</idno>
<idno type="doi">10.1021/acsomega.8b01614</idno>
<idno type="pmc">PMC6289575</idno>
<idno type="wicri:Area/Main/Corpus">000084</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000084</idno>
<idno type="wicri:Area/Main/Curation">000084</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000084</idno>
<idno type="wicri:Area/Main/Exploration">000084</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Comparative Studies of White-Rot Fungal Strains (
<i>Trametes hirsuta</i>
MTCC-1171 and
<i>Phanerochaete chrysosporium</i>
NCIM-1106) for Effective Degradation and Bioconversion of Ferulic Acid.</title>
<author>
<name sortKey="Patil, Pravin D" sort="Patil, Pravin D" uniqKey="Patil P" first="Pravin D" last="Patil">Pravin D. Patil</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019</wicri:regionArea>
<wicri:noRegion>Mumbai 400019</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yadav, Ganapati D" sort="Yadav, Ganapati D" uniqKey="Yadav G" first="Ganapati D" last="Yadav">Ganapati D. Yadav</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019</wicri:regionArea>
<wicri:noRegion>Mumbai 400019</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">ACS omega</title>
<idno type="ISSN">2470-1343</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Biodegradation of ferulic acid, by two white-rot fungal strains (
<i>Trametes hirsuta</i>
MTCC-1171 and
<i>Phanerochaete chrysosporium</i>
NCIM-1106) was investigated in this study. Both strains could use ferulic acid as a sole carbon source when provided with basal mineral salt medium.
<i>T. hirsuta</i>
achieved complete degradation of ferulic acid (350 mg L
<sup>-1</sup>
) in 20 h, whereas
<i>P. chrysosporium</i>
degraded it (250 mg L
<sup>-1</sup>
) in 28 h. The metabolites produced during degradation were distinguished by gas chromatography-mass spectrometry. Bioconversion of ferulic acid to vanillin by
<i>P. chrysosporium</i>
was also investigated. The optimum experimental conditions for bioconversion to vanillin can be summarized as follows: ferulic acid concentration 250 mg L
<sup>-1</sup>
, temperature 35 °C, initial pH 5.0, mycelial inoculum 0.32 ± 0.01 g L
<sup>-1</sup>
dry weight, and shaking speed 150 rpm. At optimized conditions, the maximum molar yield obtained was 3.4 ± 0.1%, after 20 h of bioconversion. Considering that the degradation of ferulic acid was determined by laccase and lignin peroxidase to some extent, the possible role of ligninolytic enzymes in overall bioconversion process was also studied. These results illustrate that both strains have the potential of utilizing ferulic acid as a sole carbon source. Moreover,
<i>P. chrysosporium</i>
can also be explored for its ability to transform ferulic acid into value-added products.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">30555994</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">2470-1343</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>3</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2018</Year>
<Month>Nov</Month>
<Day>30</Day>
</PubDate>
</JournalIssue>
<Title>ACS omega</Title>
<ISOAbbreviation>ACS Omega</ISOAbbreviation>
</Journal>
<ArticleTitle>Comparative Studies of White-Rot Fungal Strains (
<i>Trametes hirsuta</i>
MTCC-1171 and
<i>Phanerochaete chrysosporium</i>
NCIM-1106) for Effective Degradation and Bioconversion of Ferulic Acid.</ArticleTitle>
<Pagination>
<MedlinePgn>14858-14868</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/acsomega.8b01614</ELocationID>
<Abstract>
<AbstractText>Biodegradation of ferulic acid, by two white-rot fungal strains (
<i>Trametes hirsuta</i>
MTCC-1171 and
<i>Phanerochaete chrysosporium</i>
NCIM-1106) was investigated in this study. Both strains could use ferulic acid as a sole carbon source when provided with basal mineral salt medium.
<i>T. hirsuta</i>
achieved complete degradation of ferulic acid (350 mg L
<sup>-1</sup>
) in 20 h, whereas
<i>P. chrysosporium</i>
degraded it (250 mg L
<sup>-1</sup>
) in 28 h. The metabolites produced during degradation were distinguished by gas chromatography-mass spectrometry. Bioconversion of ferulic acid to vanillin by
<i>P. chrysosporium</i>
was also investigated. The optimum experimental conditions for bioconversion to vanillin can be summarized as follows: ferulic acid concentration 250 mg L
<sup>-1</sup>
, temperature 35 °C, initial pH 5.0, mycelial inoculum 0.32 ± 0.01 g L
<sup>-1</sup>
dry weight, and shaking speed 150 rpm. At optimized conditions, the maximum molar yield obtained was 3.4 ± 0.1%, after 20 h of bioconversion. Considering that the degradation of ferulic acid was determined by laccase and lignin peroxidase to some extent, the possible role of ligninolytic enzymes in overall bioconversion process was also studied. These results illustrate that both strains have the potential of utilizing ferulic acid as a sole carbon source. Moreover,
<i>P. chrysosporium</i>
can also be explored for its ability to transform ferulic acid into value-added products.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Patil</LastName>
<ForeName>Pravin D</ForeName>
<Initials>PD</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yadav</LastName>
<ForeName>Ganapati D</ForeName>
<Initials>GD</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>11</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>ACS Omega</MedlineTA>
<NlmUniqueID>101691658</NlmUniqueID>
<ISSNLinking>2470-1343</ISSNLinking>
</MedlineJournalInfo>
<CoiStatement>The authors declare no competing financial interest.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>07</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>10</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>12</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>12</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>12</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30555994</ArticleId>
<ArticleId IdType="doi">10.1021/acsomega.8b01614</ArticleId>
<ArticleId IdType="pmc">PMC6289575</ArticleId>
</ArticleIdList>
<pmc-dir>pmcsd</pmc-dir>
<ReferenceList>
<Reference>
<Citation>J Biotechnol. 2000 Mar 10;78(2):193-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10725542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2000 Jul 14;80(3):195-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10949310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2001 Aug;56(3-4):296-314</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11548997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2001 Oct;45(1):85-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11572595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2001 Nov;49(11):5207-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11714304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2003 Feb 12;51(4):1005-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12568563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2003 Jan;50(1):71-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12656231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2005 Feb 1;385(Pt 3):745-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15453829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2005 Jul;96(11):1223-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15734308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1985 Feb;49(2):299-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16346716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1986 Aug;52(2):251-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16347125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1988 Feb;54(2):466-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16347560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1989 Sep;55(9):2391-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16348018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1995 Dec;61(12):4274-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16535182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1997 Mar;63(3):857-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16535551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1991 Aug 1;288(2):456-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1654834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Microbiol. 2006;32(3):115-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16893749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2007 Dec;25(12):571-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17988755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2008 Jan;72(1):212-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18175910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Talanta. 2001 Aug 3;55(1):189-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18968361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2010 Apr;101(7):2331-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19948398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genomics. 2011 Apr;12(2):104-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21966248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 2012 Jun;167(4):685-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22588735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 2013 Feb;169(4):1353-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23306890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1990 Aug 20;269(1):261-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2387411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycobiology. 2010 Dec;38(4):238-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23956663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Molecules. 2014 May 07;19(5):5898-912</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24810805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2014 Aug;166:602-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24951276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2015 Mar;179:35-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25514400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2015 Jan;8(1):40-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25578271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Oct 06;6:34644</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27708366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2017 Oct;63(5):877-894</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28275822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Microbiol. 2017 May 30;2:17087</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28555641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1995 Jan 1;305 ( Pt 1):17-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7826325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1998 May 29;428(3):141-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9654123</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Inde</li>
</country>
</list>
<tree>
<country name="Inde">
<noRegion>
<name sortKey="Patil, Pravin D" sort="Patil, Pravin D" uniqKey="Patil P" first="Pravin D" last="Patil">Pravin D. Patil</name>
</noRegion>
<name sortKey="Yadav, Ganapati D" sort="Yadav, Ganapati D" uniqKey="Yadav G" first="Ganapati D" last="Yadav">Ganapati D. Yadav</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000129 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000129 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30555994
   |texte=   Comparative Studies of White-Rot Fungal Strains (Trametes hirsuta MTCC-1171 and Phanerochaete chrysosporium NCIM-1106) for Effective Degradation and Bioconversion of Ferulic Acid.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30555994" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020